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Interactive Discovery  
in Large Data Sets 

� Discovery 
◦ What is interesting? Novel? 
◦  Big NASA data sets 
�  LSST: 28 TB/day 
�  SKA:  86 TB/day 

� Explanations 
◦ AI: actions + reasons for them 

� Why “interactive”? 
◦ No general definition of “interesting” 
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Large Synoptic Survey 
Telescope (LSST) 

Square Kilometre Array (SKA) 



Spirit’s McMurdo Panorama, 1000 sols, October 2006 (NASA/JPL/Cornell) 
22,348 x 5771 pixels = 386 MB 

What’s most interesting here? 
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Example: Mars Rover Panorama 



Zooming in 

Portion of Spirit’s McMurdo Panorama,  
1000 sols, October 2006 (NASA/JPL/Cornell) Interactive Discovery in Large Data Sets - CS 886 4 



Zooming in 

Portion of Spirit’s McMurdo Panorama,  
1000 sols, October 2006 (NASA/JPL/Cornell) 
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Discovery 

� Exploration of large data sets 

� Desiderata 
◦ Diverse sampling of data set 

System 
learns 
model 

System 
chooses 

item 
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Unsupervised learning 



What to select? 
�  Items that differ from those previously 

seen 
� Principal Components Model 
◦ Approximate model of data set variation 

◦ Keep only the top K vectors from U 
X = U�V TKnown items 

[M. Scholz, 2006]  
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What to select? 
�  Items that differ from those previously 

seen 
� Principal Components Model 
◦ Approximate model of data set variation 

◦ Keep only the top K vectors from U 
◦  Select items in D that are  

difficult to represent with model U 
� Reconstruction error 

R(x) = ||x� (UUT (x� µ) + µ)||2
Reconstruction of x 

Mean of X 

For x in D 
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X = U�V TKnown items 



DEMUD: Discovery through Eigenbasis 
Modeling of Uninteresting Data 

Select most 
interesting x in D 

Update 
model U to 
include x 

Compute 
score for all x 
in D using U 

Initial ranking of D 
by PCA-1 

reconstruction error 
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Treat x as  
“no longer interesting” 



Updating model U with new x 

� Redo PCA from scratch: expensive 
�  Incrementally update U: fast! 
◦ U depends only on previous U and new x 
◦  [Ross et al., 2008] 

Iterations 

Data 

Principal Components 

X1 X2 X3 X4 X5 

U1 U2 U3 U4 U5 
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McMurdo selections 

� 1200 features: 100x100 RGB, downsamp. 
5x 

� K=20 
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Selection #1 



McMurdo selections 

� 1200 features: 100x100 RGB, downsamp. 
5x 

� K=20 
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Selection #2 



McMurdo selections 

� 1200 features: 100x100 RGB, downsamp. 
5x 

� K=20 
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Selection #10 



Explanations 

� Reconstruction residuals 
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Original Features Residuals 

1 

2 

3 

Dark: lower intensity than expected 
Bright: higher intensity than expected 

Dark area at bottom has small residual 
è learning happened! 



ChemCam: Carbonates 

� ChemCam: LIBS instrument on MSL 
� Data set: 60 lab samples  

+ 40 carbonates 
◦  6143 features (bands) 
◦ K (8) chosen to  

capture 90% variance 
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Regular PCA 

DEMUD 

Colored items are carbonates; white are non-carbonates 

1SVM-int 



ChemCam: Explanations 

� Top 10 items chosen by DEMUD 

Ranked by “interestingness” Explanations (residuals) 
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Interactive Discovery 

� Guided exploration of large data sets 

� Desiderata 
◦ Quickly find items of interest, even if rare 
◦ Don’t miss anything! 

User 
reviews 

item 

System 
chooses 

item 
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Semi-supervised learning 



Interactive DEMUD 

Select most 
interesting x in D 

Query user on x 
•  Interesting or 

uninteresting? 

If uninteresting, 
update model U 

Compute 
score for all x 
in D using U 

Initial ranking of D 
by PCA-1 

reconstruction error 
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Alternative: Two-class SVM 

� Model interesting and uninteresting 
classes 

�  Select most interesting item 

Smooth 

Varied 
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Alternatives: Static Baseline 

�  Select by PCA-K ordering 
◦  Same initial model as DEMUD 

� No feedback 

Interactive Discovery in Large Data Sets - CS 886 20 



Random subset of CRISM data 

CRISM: Magnesite Discovery 
�  Magnesite (MgCO3): possible groundwater deposit 
�  CRISM data: 0.364 to 3.92 μm, 197 bands 
�  Only 17 of 15,400 items match 

Data from Mars Reconnaissance Orbiter/CRISM 

MgCO3 
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Other Applications 

� Text 
◦  Long Wavelength Array system log files 
◦ Detect anomalous system behavior 

� Onboard prioritization 
◦  Imaging spectrometers 
�  Hyperion on EO-1: 256x6000x242 

◦ Assign priorities for input to  
onboard compression: ROI-ICER 
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Summary 

� Discovery 
◦  PCA-based model + reconstruction error 

� Explanations 
◦ Why was it chosen? 

�  Interactive discovery 
◦ Model the uninteresting to avoid it 

� Next challenge: evolving class of interest 
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Thank you! 
Contact: kiri.wagstaff@jpl.nasa.gov 
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Faces Data Set 

� 40 people, 10 poses each 
� High dimensionality: 10,304 
� Goal: Discover 3 women 
◦ Data set is mostly men 
◦ Challenge: disjunction 

Data from AT&T Laboratories Cambridge Interactive Discovery in Large Data Sets - CS 886 26 
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